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ABSTRACT 

The Fleet Numerical Meteorology and Oceanography Center (FNMOC) has 

the charter to provide Special Sensor Microwave/Imager (SSMI) data to the DOD 

and the NOAA. This has led FNMOC to examine new methods for processing 

SSM/I data to generate SSM/I products. Of particular interest is the ability to use 

the SSM/I to remotely sense ocean surface winds. 

For this study four candidate wind retrieval algorithms initially proposed at 

the SSM/I Algorithm Symposium held in June, 1993 are examined for potential 

implementation at FNMOC. Previous calibration/validation studies of the efficacy 

of wind speed algorithms focused on regional (mid-latitude or tropical) data sets 

prompting the requirement to develop a more encompassing, global data set on 

which to evaluate the proposed algorithms. 

Comparisons of SSM/I wind retrieval methods reveal that the current FNMOC 

operational algorithm overestimates wind speeds when atmospheric water vapor 

content exceeds 50 kg/m2. Adjustments made to this algorithm effectively mitigate 

the high wind speed bias, but at the cost of eliminating a significant amount of data. 

Neural network algorithms display high wind speed bias for winds above 11 m/s 

and low wind speed bias for winds below 4 m/s. The performance of neural 

network algorithms is largely independent of atmospheric moisture content. A new, 

global training data set is necessary to enable neural network algorithms to perform 



properly over the full range of global wind speeds. The use of brightness 

temperature-based rain flags are recommended for use in all wind speed retrieval 

methods. 
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I. INTRODUCTION 

Microwaves, a generic term that includes centimeter, millimeter, and submillimeter 

wavelength regions of the electromagnetic spectrum, play an important role in the remote 

sensing of the Earth's atmosphere. Microwaves penetrate clouds, for example, and are 

therefore able to provide an all-weather measurement capability. Additionally, microwaves 

provide a direct means for the determination of cloud water content. Early aircraft and 

satellite flights showed that passive microwave radiometers could be used to detect 

microwave energy emitted by the Earth's oceans, and that these emissions could, in turn, be 

used to develop algorithms to retrieve ocean surface wind speeds. 

Microwave radiometry of Earth from satellites began with the 1968 launch of 

Cosmos-243 and the 1970 launch of Cosmos-384. These Soviet satellites contained a nadir- 

viewing instrument having four channels with frequencies between 3.5 and 37 GHz, and 

provided determinations of water vapor and cloud liquid water over the oceans in addition 

to surface parameters. The first U.S. microwave imagers to evaluate the dynamics of the 

ocean surface from space were the electrically scanning microwave radiometer (ESMR) 

systems aboard NIMBUS-5 (1972) and NIMBUS-6 (1975) satellites (Janssen, 1993). 

In 1978, the first scanning multichannel microwave radiometers (SMMR) were 

carried aboard the SEASAT-A and NIMBUS-7 satellites. The SMMR contained five 

channels with dual polarization at frequencies from 6.6 to 37 GHz, and provided the first 

multi wavelength observations in the atmospheric "window" regions of the microwave 

spectrum. Sea-surface temperatures and wind speed were obtained from the 6.6 and 10.7 

GHz measurements. Despite some limitations, the SMMR clearly demonstrated the 

capability to remotely sense near-surface ocean wind speeds (Janssen, 1993). 

Following the SMMR, a Special Sensor Microwave/Imager (SSM/I) was built by 

Hughes Aircraft Company (HAC) under the direction of the Naval Space Systems Activity 

(NSSA) and the Air Force Space Division as part of the Defense Meteorological Satellite 

Program (DMSP).  The SSM/I represents a joint Navy/Air Force operational program to 



obtain synoptic maps of critical atmospheric, oceanographic, and selected land parameters 

on a global scale, including the measurement of local and large scale variability of ocean 

surface wind speeds for ridge, front, and storm weather systems (Hollinger et al., 1987). 

The SSM/I has a higher frequency range for microwave energy detection than the SMMR 

and twice the swath width. The first SSM/I was launched in June of 1987 aboard DMSP 

spacecraft F8. Identical SSM/I instruments have subsequently been launched aboard DMSP 

spacecrafts F10 (1990), Fl 1 (1992), F12 (1994) and F13 (1995). 

The earliest SSM/I wind speed retrieval algorithm was developed by Environmental 

Research and Technology, Inc (ERT) for Hughes and is termed the D-matrix algorithm. 

This multi-channel linear regression algorithm employs nine distinct climate codes 

segmented according to season and latitude band. Because microwave radiation at SSM/I 

frequencies is susceptible to attenuation by rain, which masks the wind speed signature 

generated by waves and foam on the ocean surface, ERT suggested the use of a "rain flag" 

for the purpose of identifying conditions under which less accurate wind speed retrievals are 

produced (Lo, 1983 and Hollinger et al., 1987). 

Not long after the launch of the first spacecraft with an SSM/I instrument aboard, 

DMSP undertook to calibrate and validate the SSM/I wind speed retrieval algorithm 

developed by ERT. Validation of the D-matrix algorithm was done using the anemometer 

measured winds of open ocean buoys maintained by the National Oceanic and Atmospheric 

Administration (NOAA). The results of the D-matrix algorithm validation indicated that it 

possessed a high wind speed bias and exhibited significant discontinuity across climate code 

boundaries (Hollinger et al., 1991). To correct these problems, new coefficients for the D- 

matrix algorithm were developed, in 1989, by Goodberlet et al., to bring the wind speed 

retrieval accuracy to within the DOD specified requirement of ±2 m/s under rain free 

conditions. The Goodberlet algorithm is the algorithm currently employed at the Fleet 

Numerical Meteorological and Oceanography Center (FNMOC). Subsequent modifications 

to the Goodberlet algorithm were completed by Goodberlet, Swift and Wilkerson in 1992. 

In addition to traditional regression-based algorithms, attempts have been made to 



retrieve wind speeds from SSM/I data using artificial intelligence - specifically, neural 

networks. The use of neural networks to perform wind speed retrieval was first 

demonstrated by Dawson and Fung (1993). The first neural network developed specifically 

for use with SSM/I data was constructed by Stogryn et al. (1994) and showed a 30% 

increase in wind speed retrieval accuracy in non-precipitating conditions. More recently, 

a single "all-weather" neural network was developed by Krasnopolsky et al. (1994), that 

achieved similar accuracies. 

The regression algorithms and neural networks used to retrieve ocean wind speeds 

from SSM/I data have all been developed and tested using the same SSM/I - NOAA buoy 

pair data base used to validate the original D-matrix algorithm. These data consist of 

brightness temperatures from spacecraft F8 during the period 10 July 1987 through 31 

March 1988, and in-situ measurements from NOAA buoys that lie predominately in the mid- 

latitude ocean region. The lack of algorithm validation against buoys in equatorial regions, 

where lower wind speeds and higher atmospheric moisture dominate, was recognized at the 

SSM/I Algorithm Symposium held in June 1993, as was the need for an expanded data set 

that would encompass regions varied enough for the SSM/I - NOAA buoy pair data set to 

be considered truly global. 

To address the need for validation of wind speed retrieval algorithms in the lower 

wind speed, high moisture regions, Sayward (1994) examined data from equatorial TOGA 

buoys for the three month period Sep-Dec 1991. This initial work revealed problems at low 

wind speeds, indicating a need for further study. The goals of this study, then, are to: 

a) compile an expanded data set of SSM/I - NOAA buoy pairs in mid-latitude 
regions. 

b) compile an expanded data set of SSM/I - NOAA buoy pairs in equatorial 
regions. 

c) combine the individual mid-latitudinal and equatorial SSM/I- NOAA buoy pair 
data sets into a single global data set. 

d) evaluate the performance of the following wind retrieval methods over a global 
data set: 
-   Calibration Validation algorithm (CV) 



- Goodberlet, Swift, Wilkerson improved algorithm (GSW) 
- Stogryn, Butler, Bartolac Neural Network (SBB) 
- Krasnopolsky, Breaker, Gemmill Neural Network (NMC) 

The following chapter gives an overview of the physics of microwave radiometry, 

provides background information on the NOAA buoys used in this study, introduces the 

reader to neural networks, describes in detail the four competing wind retrieval methods 

algorithms, and provides a detailed description of the SSM/I instrument. Chapter III 

describes the method used to obtain SSM/I - NOAA buoy pairs for study, and the methods 

used to compare the different wind retrieval methods. Chapter IV discusses the results of 

the wind speed retrieval comparisons. Chapter V analyzes the results. Finally, Chapter VI 

presents conclusions and recommendations. Figures and tables illustrating the comparison 

results are contained in Appendix A and B respectively. 



H. BACKGROUND 

A.   THEORY 

1.   Sources of Thermal Radiation 

All objects in the physical universe which are not at absolute zero temperature radiate 

energy in the form of electromagnetic waves. Some ofthat energy is transported as energy 

in the microwave region (4-100 GHz). To understand how and why passive microwave 

radiometers are used to remotely sense the ocean surface, it is necessary to first understand 

radiative transfer theory. Radiative transfer theory describes the intensity of radiation 

propagating in a general class of media, of which the ocean is a constituent, that absorb, 

emit, and scatter radiation. In the theory, the intensity or "brightness", which is a flow of 

energy across a unit area, per unit frequency for a blackbody medium, follows from Planck's 

law, which describes the wavelength and temperature dependence of radiation emitted from 

a blackbody (Janssen, 1993): 

B = radiance 
k = Boltzmann's Constant 
v = frequency 
h = Planck's constant 
c = speed of light 
T = temperature 

In the case of microwaves, however, hv « kT. This is known as the Rayleigh-Jeans 

limit and allows equation (1) to be approximated as: 

2v2lcT 
(2) 5v(r> * 

c2 

The significant feature of the Rayleigh-Jeans limit is the linear relationship of the Planck 



function with physical temperature. In the case of the ocean, which is an only moderately 

reflective surface, its thermal emission is reduced by its emissivity e^, which is a function 

of incidence angle, sea surface temperature, and salinity. For an isothermal surface viewed 

at an angle 6, the emitted radiation, Te, depends only on the product of the temperature Tt 

and the emissivity et of the surface: 

(3) T. = et 7 

Inserting equation (3) into equation (2) gives the ocean radiance, L: 

(4) LJT) * ^ [e,7]   . 
c 

L = ocean radiance 
k =  Boltzman's Constant 
v =   frequency 
c =   speed of light 
e =   ocean surface emissivity 
Ts =   surface temperature 

The thermal radiation spectrum received by a passive microwave radiometer is 

comprised of three primary components:   1) surface emitted and reflected radiation,  2) 

upwelling atmospheric radiation, 3) reflected downwelling atmospheric radiation (Figure 1). 

If 8 is the local zenith angle on Earth viewed by the satellite instrument and the Z- 

direction is normal to the Earth's surface, then the equivalent blackbody temperature of this 

radiation may be expressed (Grody, 1993): 

(5) 75(v,6) = 7 (v,6) + 7 (v,6)e w°e + 7 (v,0)e Tse°e 

where: 

TB = total brightness temperature 
7  = upwelling atmospheric radiation 
7 = surface emitted and reflected radiation 
T = reflected downwelling radiation 

ex= transmittance function. 



The quantity (t) is the atmospheric opacity or the relative capacity of atmospheric 

constituents (oxygen, water vapor, clouds, or rain) to obstruct the transmission of radiant 

energy. At microwave frequencies away from absorption maxima, and under most 

atmospheric conditions except moderate to heavy rainfall, the opacity is small. The reflected 

and emitted radiation from the surface are difficult to treat analytically because of multiple 

scattering due to surface roughness and inhomogeneities within the material. 

2. Ocean Surface Microwave Emission 

For inferring wind speed at the ocean surface, the surface emissivity, e, is the single 

most important parameter. Winds act on the ocean surface to generate surface waves which 

increase in amplitude with increasing wind speed. As the waves grow, roughness elements 

associated with these waves also increase. Eventually, the waves begin to break forming 

whitecaps and foam which tend to scatter the emitted surface radiation. Foam, which is a 

combination of air and water, has a lower reflectivity than pure water and, therefore, a 

higher emissivity. (Krasnopolsky et al.,1994) 

To determine the amount of microwave emission from the ocean surface, 

relationships may be developed based upon the knowledge that microwaves seldom exceed 

penetration skin depths of greater than 1 cm. For this reason, the ocean may be assumed to 

be semi-infinite, homogeneous, and isothermal. Since all transmitted energy is eventually 

absorbed in a semi-infinite, homogeneous conducting medium, absorption can be defined 

as: 

(6) A = 1  - R    . 

A = absorption of microwave energy 
R = reflectivity of ocean surface 

If one further assumes the ocean surface is at thermal equilibrium, then the rate of emission 

from the surface is equal to the rate of absorption at the surface and equation (6) may be 

written: 

(7) R = 1 -e   , 



where e is the emissivity from the ocean surface. 

For a calm sea surface, microwave emissions as a function of incidence angle are 

highly polarized. At the SSM/I viewing angle of 53 degrees, for example, the emissivity for 

vertical polarization is nearly twice that of horizontal polarization (Figure 2). This large 

polarization difference is exploited to distinguish ocean surfaces from other surfaces or 

atmospheric particles where scattering of the microwaves reduce polarization differences. 

Over smooth water surfaces the reflectivity is calculated from the Fresnel coefficients for 

a plane dielectric interface: 

(8a) 
e cos 0 - Je    - sin2 0 w V     V* 

e cos 0 + Je    - sin2 0 w y    w 

(8b) r   = 
e cos e-y^" sin 2 0 

e cos 0 + we    - sin2 0 w V    w 

where: 

rv = vertical polarization 
rh = horizontal polarization 
e^ = complex relative dielectric constant. 

A commonly used linear approximation to ocean surface reflectivity is 

(9) rp = 0.638  - 0.00272V   , 

where vis frequency in GHz. Owing to the difficulties of characterizing the shape of wind 

roughened surfaces and the complexity of electromagnetic interactions with any reasonably 

realistic representation of the wave shape, models that rely on empirical corrections based 

on experimentally derived relationships between brightness temperature and wind speed 

have been developed. 

Three mechanisms affect emissivity from a rough ocean surface. The first of these 

8 



results from surface waves having long wavelengths compared to microwaves. These 

surface waves change the local incident angle and mix the horizontal and vertical 

polarization states (Wentz, 1992). A second roughness mechanism is the diffraction of 

microwaves by surface waves that are small compared to radiation wavelength, called Bragg 

diffraction. The third mechanism is due to foam from breaking waves. 

The individual contributions of these three mechanisms to total brightness 

temperature varies with incidence angle of the radiometer and the ocean's physical condition 

at the surface. At low incidence angles (<20 deg), specular reflections from long ocean 

waves of comparable slope dominate. From 20-60 deg Bragg roughness effects dominate 

ocean surface emissions. As foam forms on the ocean higher brightness temperatures are 

generated. Because foam consists of a mixture of air and water, the average dielectric 

constant of foam is much less than the value of water. Since the dielectric is lower the 

reflectivity is also lower, therefore, the brightness temperature is higher (Swift, 1990). If 

there is no foam on the surface only the brightness temperature of the water is measured - 

normally around 110 K; but if the ocean surface is 100% foam covered, then the true water 

temperature is measured - at temperatures around 290 K. Thus, there is a substantial swing 

in brightness temperatures. Since the percent foam coverage increases with surface wind 

speed, this difference in brightness temperature may be used to determine ocean wind speed. 

Ocean foam, which is normally present for wind speeds co (measured at 20 m above 

the ocean surface) greater than ~ 7 m/s, is modeled as a perfect blackbody (e= 1), and with 

a frequency-dependent effective fractional surface coverage, fg (Gasiewski, 1993): 

(10) f 

— v/v 
0.006 (1- e      •) (0) -7);     u>*7m/s 

where v0= 7.5 GHz. Due to the impact of wind-induced foam and surface roughness, the 

emissivity of the ocean increases from 0.50 to 0.55 for winds ranging from calm to 20 m/s. 

A similar increase in emissivity results from a decrease in sea-surface temperature, so that 



the total emissivity variation is ±0.05 about an average value of 0.55 (Grody, 1993). 

Horizontally polarized brightness temperatures for rough and foam covered ocean 

surface display an increase over smooth surface values, regardless of radiometer viewing 

angle (Hollinger, 1971). Vertically polarized brightness temperatures do not vary 

monotonically with angle. For rough ocean surfaces viewed at angles less than 50 deg, 

vertical polarization temperature increases with roughness. At viewing angles greater than 

50 deg vertical polarization temperature values decrease for rough ocean surfaces. It is 

because of this phenomenon that space radiometers view the ocean surface at approximately 

50 deg. This viewing angle serves to minimize surface roughness effects and increase 

sensitivity in brightness temperature to foam generation. No fewer than four oceanographic 

studies confirm that the percentage of foam increases with increased wind speed, and hence 

there is a relationship between wind speed over the ocean and the brightness temperature 

received by a passive radiometer (Figure 3). 

3. Atmospheric Transmission 

Energy that is radiated and reflected by the ocean through the atmosphere, is 

subjected to attenuation and absorption by atmospheric constituents. Indeed, absorption of 

microwaves by atmospheric constituents provides the physical connection into the 

atmosphere that is exploited for remotely sensing its properties. In attempting to measure 

brightness temperatures for use in wind-speed retrieval algorithms, water vapor and liquid 

water, both in the form of cloud water and rain, play important roles. High levels of 

atmospheric moisture tend to affect the accuracy of brightness temperature levels received 

at the radiometer resulting in inaccurate wind speeds. The magnitude of these processes 

depends upon wavelength, drop size distribution and precipitation layer thickness. 

a. Precipitation Effects 

Rain, when present, is the primary source of atmospheric attenuation when 

viewing the ocean surface from space at frequencies less than 50 GHz (Grody, 1993). The 

attenuation results from both absorption and scattering by hydrometeors (Hollinger, 1987). 

Hydrometeors can be classified into a few distinct categories (Gasiewski, 1993): 

10 



1. Small liquid droplets of radius less than -50 n m, typical of nonprecipitating 

cumulus and stratus clouds, fog, and haze. 

2. Oblately shaped, liquid precipitation, of radius between 50 n m and ~ 5 mm. 

3. Frozen particles of radius less than ~ 1 mm. 

4. Frozen particles of radius between 1mm and -10 mm. 

Liquid hydrometeors of radius less than ~ 50 ji m absorb microwave radiation 

appreciably but scatter very little. Under this condition, the attenuation is independent of 

droplet size as long as the total mass of water droplets in a given volume remains the same. 

The radiative transfer of microwave energy through small cloud droplets can, therefore, be 

analyzed in the same manner as through a hydrometeor-free atmosphere where only 

absorption and emission occur. 

For larger liquid hydrometeors (e.g. rain) or most frozen hydrometeors (e.g. 

snow, hail, and cirrus ice), the droplets are large enough so that microwave scattering can 

be significant, particularly at high frequencies (Gasiewski, 1993). Over oceans, the 

variations in emissivity due to wind-generated roughness and foam are small compared to 

the changes in transmittance due to water vapor and liquid water. Therefore, the liquid 

water content of clouds and rain can be obtained from dual frequency measurements, where 

a second channel must be used to account for the water vapor contribution. 

Contrasts between rain and its surroundings allow for discrimination between 

rain and nonraining clouds simply from increases in brightness temperature. Warmer, more 

emissive precipitating regions over sea surfaces possess brightness temperatures that are 50 

K greater than clear areas. Absorption due to oxygen is relatively small so that absorption 

depends primarily on vertically integrated liquid water Q due to rain and cloud droplets, and 

integrated water vapor V.   The opacity through the atmosphere can be approximated as: 

(11) t *  - (V/Vv + ß/ßv) 

where the coefficients Fvand ßvdepend on the frequency and can be determined using 

atmospheric models. The liquid water parameter also depends on cloud temperature and 

11 



drop size. 

b.  Water Vapor 

The complex vibrational-rotational absorption spectrum of water vapor, 

together with relatively large concentrations of water vapor in the lower atmosphere, account 

for the dominance of this gas in the spectrum extending from the near infrared spectral 

region beyond the far infrared into the microwave region. The water vapor molecule has an 

electric dipole moment which causes resonance absorption peaks in the microwave region 

at 22.235 GHz and 183 GHz. The amount of absorption depends on the number of 

molecules present (the humidity). An increase in water vapor can result in an increase of 

up to 100 ° K in brightness temperature at 22 GHz on humid days (Swift, 1990). 

B.   OCEAN BUOYS 

1.   National Data Buoy Center (NDBC) 

During the 1960's, about 50 individual buoy programs were conducted by a variety 

of ocean-oriented agencies. In March 1966, the Ocean Engineering Panel of the Interagency 

Committee on Oceanography recommended that the United States Coast Guard (USCG) 

investigate the feasibility of a consolidated national data buoy system. As a result ofthat 

investigation, the National Council for Marine Research Resources and Engineering 

Development endorsed the formation of the National Data Buoy Development Program 

(NDBDP) in 1967. The NDBDP was created and was placed under the control of the 

USCG. 

In 1970, the National Oceanic and Atmospheric Administration (NOAA) was formed 

and the NOAA Data Buoy Office (NDBO) was created. In 1982, the NDBO was renamed 

the National Data Buoy Center (NDBC) and was placed under the NOAA's National 

Weather Service (NWS). 

The first buoys deployed by NDBC were large 12-meter discus hulls constructed of 

steel. These were generally deployed in deep water off of the U.S. East Coast and in the 

Gulf of Mexico. The measurements taken by sensors aboard these buoys include barometric 

pressure, temperature, and wind speed and direction.   By 1979, sixteen stations were 

12 



deployed in the Pacific, seven in the Atlantic, and three in the Gulf of Mexico. Eight more 

stations were deployed in the Great Lakes after 1979. In addition to 12-meter buoys, 3 and 

10 meter buoys have also been designed (Figure 4). As of February, 1995, 70 NDBC 

moored buoys were in operation. 

Moored buoys are deployed in the coastal waters from the western Atlantic to the 

Pacific Ocean around Hawaii, and from the Bering Sea to the South Pacific. NDBC's 

moored buoys measure and transmit barometric pressure; wind direction, speed, and gust; 

air and sea temperature; and wave energy spectra from which significant wave height, 

dominant wave period, and average wave period are derived. 

Meteorological sensors aboard moored buoys are normally located at the ten meter 

level for the 10 meter and 12 meter buoys. However, barometers are located inside the hull 

at the water level. Sea surface temperature sensors are located at a depth of one meter. 

To conserve power, sensors installed on moored buoys generally do not continuously 

measure and record data. Rather, for most NDBC buoys, an eight minute period is used for 

data collection by on-board sensors. Prior to 1993, the observation time was simply the 

nearest hour. Beginning in August, 1993, the official observation time was moved to 

coincide with end-of-data-acquisition time. Sensors are calibrated prior to deployment and 

are replaced with recently calibrated instruments after two years of operation. 

The payload carried aboard NDBC varies. The term "payload" refers to the 

electronic system used to acquire the data, format it into a message, and then transmit the 

message to the satellite. The payloads are as follows: GSBP ~ General Service Buoy 

Payload; DACT ~ Data Acquisition Control and Telemetry; VEEP -- Value Engineered 

Environmental Payload; MARS — Multi-functional Acquisition and Reporting System. 

Two averaging methods are used to calculate wind speed. The first technique applies 

to those measurements reported by all DACT and VEEP payloads. In this method, the 

average wind speed is the simple scalar average of the wind speed observations. The second 

method, used by the majority of NDBC buoys employed in this study (those outfitted with 

the GSBP payload), is a true vector average. In this procedure, the magnitude of the vector 
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is represented by the wind speed observation and the direction observations are used for 

orientation. The vectors are then broken down into their u and v components. All u and v 

components are then averaged separately. The resulting average speed and direction are 

calculated from the Pythagorean theorem and "arctan(v/u)", respectively. (Gilhousen, D.B., 

1987) 

The electronic payloads installed on moored buoys generally transmit data to one of 

the NOAA's Geostationary Operational Environmental Satellites (GOES) each hour. The 

GOES relays the data message to the NESDIS Data Acquisition Processing System (DAPS) 

at Wallops Island, VA. Next, DAPS sends the data to the National Weather Service 

Telecommunications Gateway (NWSTG) where gross data quality control is performed 

before the data are distributed in meteorological codes in real time (less than 30 minutes). 

NWSTG also sends the raw satellite and the NWSTG quality controlled data to 

NDBC where the data are recomputed from the satellite message, and are put through a 

series of automated and manual checks. The result is that data processed and archived at 

NDBC are of a higher quality than the real time data disseminated by NWSTG (Figure 5). 

Archived NDBC data is available on CD-ROM. 

NDBC moored buoys are each assigned a World Meteorological Organization 

(WMO) station identifier composed of five numeric characters. For moored buoys these 

identifications are location specific. WMO identifiers are in the form of "&&###" where 

"&&" represents a WMO oceanic or continental region and ### denotes a specific location 

(e.g., 46042, 41003). With respect to regions, 32 denotes stations in the Pacific off the coast 

of South America, 41 - the Atlantic off of the southeast U.S. coast, 44 ~ the Atlantic Ocean 

north of North Carolina, 42 -- the Gulf of Mexico, 45 - the Great Lakes, 46 the U.S. coastal 

Pacific Ocean, 51— the Hawaiian Islands, 52 ~ Guam. 

2.   Tropical Ocean-Global Atmosphere (TOGA) 

The widespread and systematic influence of the El-Nino-Southern Oscillation 

meteorologic phenomenon, which is characterized by a weakening of the trade winds and 

warming of the surface layers in the equatorial Pacific Ocean every 4-7 years, led to the 
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initiation of the Tropical Ocean-Global Atmosphere (TOGA) Program. The TOGA program 

was designed as a ten-year study (1985-1994) of climate variability on seasonal to 

interannual time scales, whose success relied upon the accurate measurement of ocean 

surface winds, sea surface temperature, upper ocean heat content, near-surface currents, and 

sea level in the tropical Pacific ocean. 

Plans for TOGA in the early 1980's called for an ocean observing system that would 

rely on an increased utilization of satellite products, in particular for surface winds, SST and 

sea level, and on the development of a "thin monitoring" array of in situ measurements based 

on an enhancement of existing capabilities. The in situ array would specifically include a 

volunteer observing ship (VAS), expendable bathythermograph (XBT) program, a tide 

gauge network, a drifting buoy program, and, most importantly, about 15 moorings located 

principally in the eastern Pacific (Figure 6) (U.S. TOGA Project Office, 1988). 

The need for improved in situ observational capabilities in TOGA motivated Dr. 

Stanley P. Hayes of the NOAA's Pacific Marine Environmental Laboratory (NOAA/PMEL) 

to develop a wind and thermistor-chain mooring capable of telemetering its data to shore in 

real-time. He also conceived and directed the implementation of a basin-scale network of 

these moorings, which he called the TOGA Tropical Atmosphere Ocean (TAO) array 

(Hayes et al., 1991). TOGA-TAO far exceeded in scope what had been originally 

anticipated as a moored array component to the TOGA observing system. By December, 

1994 TAO consisted of 70 moorings supported by a multi-national base. Beginning in 1989, 

relative humidity sensors were added for studies of atmospheric boundary layer dynamics 

and air-sea exchange processes. Expansion of the array was achieved during the second half 

of TOGA (1990-1994). 

TOGA was intended to examine long-term oceanographic phenomena. Therefore, 

the standard output was a daily averaged wind speed. However, some buoys were equipped 

with onboard storage that allowed retrospective instantaneous (6 minute) measurements of 

wind speed suitable for this study. 

TAO data are made available to the research community directly from PMEL via 
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Internet file transfer protocol (ftp) procedures, and via a dial-up phone line data base. In 

addition, PMEL retransmits a subset of the real time TAO data stream on the Global 

Telecommunications System (GTS) by Service Argos, so that the meteorological 

measurements are available for assimilation into atmospheric numerical weather prediction 

at places like the FLENUMMETOCCEN (Figure 7). 

C.    SPECIAL SENSOR MICROWAVE/IMAGER 

1. Instrument Description 

The first SSM/I instrument was flown aboard DMSP spacecraft F8 in 1987 (Figure 

8). Today, identical SSM/I instruments are in orbit aboard spacecrafts F10, Fll, F12 

(failed) and F13. This study used SSM/I data obtained from spacecrafts F8, F10 and Fl 1. 

DMSP satellites are in sun-synchronous, near-polar orbits at an altitude of 

approximately 833 km (Figure 9). The spacecraft has an orbital angle of inclination relative 

to the equatorial plane of 98.8 ° and an orbit period of 102 minutes, producing 14.1 full orbit 

revolutions per day. The radiometer scans conically at an angle of 45 degrees from the 

spacecraft resulting in an observation angle of incidence of approximately 53.1 °. The 

SSM/I rotates continuously at 31.6 rpm about an axis parallel to the local vertical and 

measures surface brightness temperature over an angular sector of 102.4 ° about the sub 

satellite track. The scan direction is from left to right when looking in the aft direction of 

the spacecraft with an active scene measurement lying ±51.2° about the aft direction. This 

results in a swath width of 1400 km. The SSM/I moves along the sub-satellite track in the 

negative 'Y' direction at 6.58 km/sec which results in a separation between successive scans 

of 12.5 km along the satellite track direction and is nearly equal to the resolution of the 85 

GHz beams. During each scan 128 uniformly spaced samples of the 85.5 GHz channels are 

taken over the scan region. Radiometer data at the remaining frequencies are sampled every 

other scan with 64 uniformly spaced samples being taken. Scan A denotes scans in which 

all channels are sampled while Scan B denotes scans in which only the 85.5 GHz data are 

taken. 

Figure 10 shows the satellite subtrack coverage over successive days.  There are 
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small unmeasured circular sectors of 2.4 ° at the north and south poles (Hollinger 1991). 

One spacecraft will not cover the entire surface every day, but horizontal coverage is dense 

enough for deriving wind speeds over most of the oceanic areas up to two times per day, 

(Schluessel et al., 1991). 

The SSM/I is a seven-channel, four frequency, linearly polarized passive microwave 

radiometer. The instrument receives vertically polarized radiation at 22.2 GHz and both 

vertically and horizontally polarized radiation at 19.3, 37.0 and 85.5 GHz. The 19.3 GHz 

channel exploits the atmospheric window that exists at that frequency to sense ocean surface 

brightness temperatures. The 22.2 GHz channel corresponds to the water vapor line at that 

frequency and is used to obtain column water abundance and humidity profiles. The 37.0 

GHz channels exploit the atmospheric window that exists at that frequency prior to the onset 

of the oxygen absorption band. The 85.0 GHz channel is designed to permit higher spatial 

resolution, but is not used in this study. 

The antenna system consists of an offset parabolic reflector focusing the Earth's 

radiation into a broadband, seven port feedhorn. This assembly, including parabolic 

reflector, feedhorn and receiver, spins about an axis parallel to the spacecraft vertical at a 

period of 1.9 s. Attached to the spin axis but not rotating are a cold sky reflector and warm 

reference load. With this arrangement the feedhorn assembly will sense the fixed cold 

reflector and warm load once each scan. This allows in flight calibration observations to be 

taken every scan and represents a significant improvement over previous passive microwave 

radiometers. 

2. Radiometer Calibration 

To ensure optimum performance of the SSM/I, the antenna temperature is carefully 

calibrated. The antenna temperature is not the physical temperature of the antenna. Rather, 

it is the power received per frequency bandwidth, divided by Boltzman's constant: 

(«> w = m 
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TA is the weighted average of the scene temperature viewed by the antenna, where the 

weighting is determined by the gain of the antenna. The more closely the gain approaches 

a delta function the better the measurement of the true brightness temperature. If the gain 

does not approximate a delta function, then other sources of radiation, particularly those 

radiating into the sidelobes, contribute to the signal. Brightness temperature (TB), antenna 

temperature (TA) and gain (G) are related by: 

(13) W = ^J W °M dQ   . 
Q 

The accuracy of the measured antenna temperature depends on the accuracy of the 

calibration sources. The typical flight radiometer, like the SSM/I, uses a two-point 

temperature calibration where an on board warm target and the cold space background are 

used to obtain the calibration. In this case, the antenna field of view is enclosed with a 

temperature controlled microwave absorber (or load) at each of two temperatures, rh0,and 

TmlA. If the radiometer is linear, then the antenna temperature Ta for a target at an unknown 

temperature becomes: 

(14) Ta = c(V - V0) 

where V0 is the voltage offset due to the receiver temperature and the radiometer calibration 

constant c is determined as 

T     - T 

hot cold 

where the voltages J^and Vmld&re the measured output voltages for the respective rhot and 

TcM loads (Janssen, 1993). 

In the case of the SSM7I, the calibration error of the hot load is measured first prior 

to launch, during the thermal vacuum calibration.    Thermal vacuum radiometer calibration 
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is accomplished using two precision microwave reference targets, each instrumented with 

eight precision platinum temperature sensors, as well as the spacecraft hot load to simulate 

an operational configuration. A liquid nitrogen cooled precision target is substituted for the 

cold sky reflector, and a variable precision target is positioned over the feedhorn to simulate 

active scan data. Calibration error is measured by comparing the variable reference target 

temperature when equal to that of the hot load. 

During flight, the spacecraft hot target is used as the calibration hot reference. The 

spacecraft hot reference is instrumented with three flight platinum temperature sensors. 

The temperature of the variable target serves as a primary standard calibration reference 

for the in-orbit hot-load and cold targets used in thermal vacuum calibration. 

For its cold reference the SSM/I possesses a calibration reflector that reflects the cold 

cosmic background into a calibration feedhorn designed to minimize the possible reception 

of extraneous energy from the spacecraft or from the earth. The radiometric temperature of 

the comic background is consistent with a blackbody radiator at 3 ° K. (Hollinger et al., 

1987) 

D.    MULTIPLE REGRESSION WIND SPEED RETRIEVAL ALGORITHMS 

1. D - Matrix Algorithm 

The first attempt at retrieving surface ocean wind speeds from SSM/I data was the 

linear regression, "D-matrix" algorithm developed by Environmental Research and 

Technology, Inc. (ERT) for Hughes Aircraft (Lo, 1983): 

(16) SW = C0. + C1;. • TB(19H) + C2. • TB(22V) 
+ C3. • TB(37V) + C4. ■ TS(37H)    . 

Equation (16) is valid only over open ocean, where the wind speed, SW, is in m/s and is 

referenced to a height of 19.5 m above the surface. The term TBx represents the brightness 

temperature of frequency/polarization combination "x". Cv represents D-matrix coefficients 

where "j", the climate code index, is a number from 1-11 that represents of one of eleven (9 

19 



distinct) climate codes established by ERT according to a particular season and latitude 

band.   As discussed earlier, microwave radiation at the SSM/I frequencies is heavily 

attenuated by rain. This phenomenon results in the obfuscation of wind speed signatures 

generated by waves and foam on the ocean surface. The amount of microwave radiation 

detected by the SSM/I under rainy conditions is, therefore, unreliable. Understanding this, 

ERT sought to "rain flag" conditions that might lead to unreliable measurements.   The 

original D-matrix rain flag logic was (Hollinger, 1991): 

IF:    TB(19H)  > 190K 
OR: [TB(37V) - TB(37H)] < 25K 
Then possible rain flag exists and rain flag = 1 

IF:    [TB(37V) - TB(37H)] <   10K 
Then heavy rain exists and rain flag = 2 

Otherwise rain flag = 0. 

The accuracy specification for wind retrievals under rain flag = 0 (clear) conditions 

was ±2 m/s over the range 3 to 25 m/s. Accuracy was not specified for winds retrieved 

under rain-flag 1 conditions, and retrieval was not even attempted under rain-flag 2. 

2. Calibration/Validation (CV) Algorithm 

Once the SSM/I aboard spacecraft F8 was launched and operating, the Naval 

Research Laboratory undertook to evaluate the effectiveness of the D-matrix algorithm in 

retrieving ocean surface winds. This process was accomplished by comparing SSM/I wind 

retrievals with coincident surface wind speed measurements taken from open ocean buoys 

maintained by NOAA. As the TOGA array had not yet been deployed, the buoys used were 

NDBC buoys located mostly in the mid-latitudes and set further than 100 km from land to 

avoid mixed land/ocean pixels. 

Results of the validation showed that roughly 15% of the total data were rain flagged. 

Scatter plots that displayed the performance of the D-matrix algorithm againstjhe buoy 

measured wind speeds revealed that the algorithm did not meet the specified accuracy 

requirement of ±2 m/s in rain-flag 0 conditions (Figure 11). The D-matrix algorithm 

performed well near the global average wind speed of 7 m/s and performed poorly (both in 
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terms of standard deviation and bias) in high wind speed regions (> 15 m/s). 

Armed with these findings, the NRL validation team sought to adjust the D-matrix 

algorithm so that it would meet the accuracy requirements. Using linear regression on 

paired buoy wind speeds and SSM/I brightness temperatures, a set of new coefficients for 

the algorithm were developed (Hollinger, 1991). The accuracy specifications were 

subsequently met (Figure 12), but the revised climate coded algorithm still underestimated 

high wind speeds and produced discontinuities across climate code boundaries (Goodberlet 

etal., 1989). 

In 1989, Goodberlet et al. published a new, global algorithm which utilized a single 

set of coefficients valid in all latitudes and seasons. Coefficients for the global algorithm 

were generated using a weighted linear regression of the buoy wind speeds on the coincident 

SSM/I brightness temperatures. The weights used in the regression were set equal to 1 over 

the square root of the wind speed density function evaluated at the particular buoy wind 

speed. This type of weighting has the effect of making all wind speed ranges equally 

important, whereas the original unweighted D-matrix regression tended to emphasize those 

wind speed ranges where few data were collected. The improved D-matrix or 

Calibration/Validation (CV) algorithm is as follows (Goodberlet, et. al., 1989): 

(17) SW = 147.9  + 1.0969 ■ TB(\9V) - 0.4555 • TB(22V) 
- 1.7600 • TB(37V) + .7860 • TB(37H)    . 

In addition to revising the linear regression coefficients, new rain flag thresholds 

were determined. The new rain flag cutoffs were determined from plots of the D-matrix 

residual versus the D-matrix rain flag, by locating the values of the rain flag parameters for 

which either the standard deviation or bias curve crossed some predetermined accuracy level 

(normally 2 m/s). In this manner four new rain flags, separate and independent of the rain 

flags developed by ERT were defined (Goodberlet, et. al., 1989): 
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Rain Flag Criteria Accuracy 

0 TB(37V) - TB(37H) > 50 

AND 
TB(19H) < 165 

<2m/s 

1 TB(37V) - TB(37H) < 50 
OR 

TB(19H) > 165 

2-5 m/s 

2 TB(37V) - TB(37H) <37 5-10 m/s 

3 TB(37V) - TB(37H) < 30 > 10 m/s 

Once constructed, performance of the CV algorithm was tested against the same data 

used to examine the performance of the D-matrix algorithm. Use of the CV algorithm 

removed much of the high-wind speed bias and zonal discontinuity associated with the 

original algorithm. However, CV retrieval accuracies in rain flagged regions continued to 

exceed ± 2 m/s. 

3. Improved Goodberlet, Swift, Wilkerson (GSW) Algorithm 

In 1992, Goodberlet, Swift and Wilkerson modified the CV algorithm in an effort 

to improve wind speed retrieval accuracy, particularly in high moisture regimes. 

Improvement in retrieval accuracy under rain flagged conditions was partially achieved in 

the medium to high wind speed range (6-20 m/s). This improved performance was achieved 

in large part by abandoning a strictly linear algorithm and introducing a non-linear 

relationship between wind speed and brightness temperature with respect to the two 

polarized brightness temperatures at 37 GHz. Goodberlet et. al. empirically described the 

weather bias exhibited by the CV algorithm as: 

(18) W~ ' W 

where WGis a wind speed retrieval from the CV algorithm and WTis the corresponding true 

surface wind speed, and Bh B2, and N are 18.56, 30.7 and 4 respectively. The GSW wind 

speed retrieval algorithm was formed by solving for   WT in equation (18).   The GSW 
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algorithm is as follows: 

W„ - 18.56 • a 
(19a) w. 

where WG is equation (18) and, 

(19b) 

a 
GSW 1.0 - a 

a = 30.7"* 

A37 

In each case, A37= TB (37V) - T^37H). The GSW algorithm can be reliably used under 

conditions when the A37 differential is greater than 40 K and , with care, when A37 is 

greater than 35 K. The GSW algorithm should be used with caution for A37 less than 35 

K and should not under any circumstances be used when A37 is less than 31 K (Goodberlet 

et al., 1992). It is clear from equation (19b) that when A37 approaches 30.7 K, equation 

(19a) has a singularity and the expression becomes meaningless. Unfortunately, A37 

measurements less than 31 K often correspond to higher moisture regimes which may be of 

interest. 

Because the modifications to the CV algorithm that resulted in the GSW algorithm 

were made based only on F-8 SSM/I brightness temperature data, Goodberlet et al. further 

state that the GSW algorithm can be reliably applied only to data from SSM/I F-8. This 

study, however, will demonstrate, among other things, how the GSW algorithm performs 

on data from other SSM/I instruments. 

E.    ARTIFICIAL NEURAL NETWORK WIND SPEED RETRIEVAL METHODS 

An alternative method for retrieving wind speeds from SSM/I data is through a 

method of artificial intelligence known as the neural network. The simplest definition of a 

neural network, is provided by the inventor of one of the first neurocomputers, Dr. Robert 

Hecht-Nielsen. He defines a neural network as (Caudill, 1989): 

"... a computing system made up of a number of simple, 
highly interconnected processing elements, which process 
information by their dynamic state response to external inputs." 
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Neural networks are processing devices that are loosely modeled after the neuronal structure 

of the mammalian cerebral cortex. Artificial neural networks cannot yet approach the 

complexity of those found in nature, yet they may have hundreds of thousands of processor 

units. 

Neural networks are typically organized in layers. Layers are made up of a number 

of interconnected "nodes" which contain an "activation function". Patterns are presented to 

the network via the "input layer", which communicates to one or more "hidden layers" where 

the actual processing is done via a system of weighted "connections". The hidden layers 

then link to an "output layer" where the answer is output (Figure 13). 

Most neural networks contain some form of "learning rule" that modifies the weights 

of the connections according to the input patterns that it is presented with. Like the 

mammals they are designed to emulate, neural networks "learn" by example. 

One of the most common learning rules used by neural networks is the delta rule. 

The delta rule is often utilized by the most common class of neural networks - called 

backpropagational neural networks (BPNN's). Backpropagation is an abbreviation for the 

backwards propagation of error. 

With the delta rule, as with other types of Backpropagation, "learning" is a 

supervised process that occurs with each cycle through a forward activation flow of outputs, 

and the backwards error propagation of weight adjustments. In short, when a neural network 

is initially presented with a pattern it makes a random guess as to what it might be. It then 

sees how far its answer was from the actual one and makes an appropriate adjustment to its 

connection weights. 

Once a neural network is "trained" to a satisfactory level it may be used as an 

analytical tool on other data. To do this, the user no longer specifies any training runs and 

instead allows the network to work in forward propagation mode only. New inputs are 

presented to the input pattern where they filter into and are processed by the middle layers 

as though training were taking place, however, at this point the output is retained and no 

backpropagation occurs. The output of a forward propagation run is the predicted model for 
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the data which can then be used for further analysis and interpretation. 

Whereas conventional computing systems are deterministic, sequential and logical, 

neural networks are not. There are no complex central processors, rather there are many 

simple ones which do little more than take the weighted sum of their inputs from other 

processors. Neural networks do not execute programmed instructions, rather they respond 

in parallel to the pattern of inputs presented to it. Because a neural network can easily model 

non-linear phenomena which otherwise may be difficult to explain, they are useful in 

modeling meteorological phenomena like global ocean winds. 

1. The Stogryn, Butler, Bartolac (SBB) Neural Network 

The first neural network trained on a set of SSM/I brightness temperatures matched 

with buoy winds was developed by Stogryn, Butler and Bartolac (1994). Stogryn et al. 

employed a type of backpropagation neural network referred to as a feed forward fully 

connected neural network (Figure 14). In this design, the neurons of the input layer do no 

processing but provide copies of an input vector to the first processing layer. In the case of 

wind retrieval, the input vector is the brightness temperature. The neurons in subsequent 

layers form linear combinations of the outputs of neurons in the preceding layer, add an 

offset, and transform the result into an output signal. For layer N, the wind speed estimate 

s is calculated as (Stogryn et al., 1992): 

(20) i = yxf + ß   , 

where ij; is a scale factor and ß is an offset. 

Stogryn et al. partitioned the same F8 SSM/I data set used by Goodberlet et al. for 

the calibration/validation of the D-matrix into two sets, one for training the neural network 

and the other for testing it. The SBB neural networks were trained and tested using 

primarily the 19V, 22V, 37V, and 37H SSM/I channels as input data. The 19H channel was 

used to help discriminate clear from cloudy or rain conditions and in determining which 

network to use. The training/test sets were further divided into three subsets. The first 

contained all SSM/I buoy matchups in designated "clear" conditions: 
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TB(37V)-TB(37H)>50K. 

The second subset included SSM/I buoy matchups that occurred under "cloudy" conditions: 

TB(37V)-TB(37H) < 50 K 

TB(19V)<TB(37V) 

TB(19H) < 185 K 

TB(37H) < 210 K . 

The third subset comprised those matchups exceeding the cloudy condition criteria and 

represents conditions where attenuation effects render the retrieval of wind speeds unwise. 

Using two separate feed forward fully connected neural networks, Stogryn et al. 

achieved dramatic improvements in performance on the partitioned data set. The SBB 

neural networks claimed a 30 % improvement in wind retrieval accuracy for clear conditions 

over earlier linear regression wind retrieval methods, and a 250% improvement under cloudy 

conditions. Attempts to further improve performance of the SBB neural networks by 

increasing the number of neurons per layer and/or the number of layers, met without 

significant success. These advances notwithstanding, application of the SBB neural network 

remains limited as it was trained on a relatively restricted data set comprised solely of data 

provided by the SSM/I aboard spacecraft F8. Most importantly, this data set does not 

include clear day wind speed values greater than 18 m/s. 

2. The Krasnopolsky, Breaker, Gem mill (NMC) Neural Network 

In 1994, Kransnopolsky, Breaker and Gemmill of the National Meteorological 

Center published a single "all-weather" neural network algorithm for estimating ocean 

surface winds from the SSM/I. This neural network sought to improve upon the results 

achieved previously by Stogryn et al. by eliminating the necessity for partitioning wind 

speeds based on "clear" and "cloudy" atmospheric conditions, thereby avoiding the 

uncertainties that necessarily arise in the region that separates the two regimes. In addition, 

the NMC neural network was designed so that its application could be extended to 

atmospheric conditions where higher levels of moisture exist - regions where previous 

algorithms had performed poorly. As a result, the NMC neural networks were trained to 
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cover adverse atmospheric conditions considered by SBB to be beyond the region where 

useful retrievals could be obtained. 

The data used by Krasnopolsky et al., to train and test their neural networks is the 

same data set used previously by GSW and SBB to formulate their algorithms. The 

brightness temperatures were acquired from the SSM/I flown aboard DMSP satellite F8. 

Again, matchups were produced only when the SSM/I retrievals were within 25 km of the 

buoy location and the time of satellite data acquisition was within 30 minutes of the buoy 

observation. As before, wind speeds were adjusted to a standard height of 19.5 m. Finally, 

as was the case in the SBB neural networks, neither the training nor the test data set included 

wind speeds greater than 18 m/s. 

In an effort to reproduce the results of SBB and make their findings directly 

comparable with those of SBB, the NMC group adopted the same neural network design 

architecture. NMC constructed a feed-forward, fully-connected neural network that 

employed back propagation. The NMC neural network contains three layers, a four node 

input layer (layer 0), one two node hidden layer (layer 1), and a single node output layer 

(layer 2). At the nodes in layers 1 and 2, linear combinations of the outputs from the nodes 

in the previous layers (layers 0 and 1) are formed. The combined input to node j in layer 1 

can be expressed: 

(21) y, - £ <y, + B, 

where the t.are the four input brightness temperatures, Q. .are the weights, B. are biases, and 

j = 1,2 (nodes of hidden layer). Combining this input into an output at each node requires 

a nonlinear transfer or "squashing" function. Thus, the output for the I-th node is expressed: 

(22) x,. = f(y) 

where/is the squashing function: 

(23) /(x) = tanh(x)    . 
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The bias term, B., serves to center the squashing function about the ordinate which makes 

the training process more efficient. The output of hidden node Xj provides the input to the 

output node, which in turn produces the neural network output: 

m 

(24) Net = b  + o/lEw.r   + ß) 
1=1 

where the ware the weights, ß is the bias, and a and b are scaling factors. (Krasnopolsky 

etal., 1994) 

Once the training is complete and weights have been determined, the desired wind 

speed, W(m/sec), is calculated as: 

(25) W = Net (T) 

where T is the input vector of brightness temperatures (Krasnopolsky et al., 1994). 

Prior to training the network, initial weights for each of the connections within the 

network are specified. Next, the brightness temperature inputs are applied to the neural 

network and the output wind speed is calculated. This output is then compared to the 

observed wind speed contained in the matchup. The difference between the calculated wind 

speed and the target wind speed is fed back (backpropagation) through the network and the 

weights at each node are changed until an acceptably small error is realized. (Krasnopolsky 

etal., 1994) 

Training takes place as the network is repeatedly exposed to matched pairs of SSM/I 

brightness temperatures and buoy wind speed. After exposure, the weights and biases are 

adjusted according to the backpropagational algorithm until convergence is achieved. 

During training several hundred thousand iterations were required to achieve convergence. 

(Krasnopolsky et al., 1994) 
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m.   STUDY PROCEDURES 

The linear regression algorithms and neural networks used to retrieve ocean wind 

speeds from SSM/I data have all been developed and tested using the same SSM/I - NOAA 

buoy pair data base used to validate the original D-matrix algorithm. That data is for 

spacecraft F8 during the period 10 July 1987 through 31 March 1988 and consists of NOAA 

buoys that lie predominately in the mid-latitude ocean region. The lack of algorithm 

validation against buoys in equatorial regions, where lower wind speeds dominate, was 

discussed at the SSM/I Algorithm Symposium, held in June 1993, as was the need for an 

expanded data set that would encompass regions varied enough for the SSM/I - NOAA buoy 

pair data set to be considered truly global. This study seeks to validate the performance of 

four wind speed retrieval methods over an expanded data set that represents, as closely as 

possible, the wind speed distribution found throughout the world. 

For this study SSM/I wind speed retrievals from the DMSP F8, F10 and Fll 

spacecrafts were taken over a 6 month period from September 1991 to April 1992 and 

compared to in-situ buoy wind speed measurements for the same period. SSM/I wind speed 

retrievals were obtained using the CV and GSW linear regression algorithms and the SBB 

and NMC neural networks. 

A.        BUOY DATA SET 

The in-situ buoy wind speed data were obtained from two sources - TOGA buoys 

and NDBC buoys. TOGA buoy data were provided by the Pacific Marine Environmental 

Laboratory (PMEL) while NDBC data were provided by the National Oceanic Atmospheric 

Administration (NOAA). Not all of the TOGA buoys that comprise the TOGA array were 

used in this study. Those that were used are listed in Appendix B Table 1. Nineteen NDBC 

buoys were used. To prevent land contamination of ocean brightness temperatures and to 

insure that the land did not restrict the wind speed fetch distance necessary for creating fully 

developed seas, only NDBC buoys further than 100 km from land were chosen (Appendix 

B Table 2) (Ulaby et al., 1986). 
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The meteorological parameters collected from the buoys include: wind speed, air 

temperature, sea surface temperature, relative humidity and barometric pressure. TOGA 

buoy wind speed measurements were made at a height of 3.8 meters above the ocean 

surface. NDBC buoy wind speed measurements were taken at a height of either 5 or 10 

meters depending on the model of buoy. In the case of both buoys, the recorded wind 

speeds were converted to an equivalent wind speed at 19.5 meters above the ocean surface, 

the height at which SSM/I wind speeds are calculated, using Smith's (1988) open ocean drag 

coefficient. 

B.        SSM/I-BUOY MATCHUP CRITERIA 

The matchup of SSM/I retrieved winds with in-situ buoy winds was conducted along 

the lines of the original D-matrix calibration/validation. For this study, SSM/I wind speeds 

for each of the four wind retrieval methods were matched with buoy wind speeds. The 

SSM/I wind speeds and buoy wind speeds were paired by the Naval Research Laboratory 

when the SSM/I retrieval was located within 25 km of the buoy position and the SSM/I 

overpass time was within 30 min of the buoy wind speed measurement. According to the 

work of Monaldo (1988), the average value of these spatial and temporal differences 

increases the total allowed standard deviation of 2 m/s by less than 10% (Goodberlet et al., 

1989). SSM/I geolocation problems reported by Hollinger (1991) are insignificant at a 

spatial separation of 25 km. NDBC buoys make an 8.5-min. average of the wind once every 

hour with an accuracy of ± 0.5 m/s for winds less than 10 m/s and 5% for winds greater than 

10 m/s (Gilhousen, 1986). Additional sources of error include the uncertainties associated 

with the fact that the buoy winds are averaged over an 8.5 min. period whereas the SSM/I 

measurements are instantaneous. Finally, the paired SSM/I and buoy measurements may 

differ, of course, by up to 25 km and 30 min. 

Because the SSM/I field of view is a swath of 1400 km, a single SSM/I overflight 

may produce several wind speed retrievals that meet the spatial and temporal criteria. Such 

a set of retrievals are highly correlated with each other (Goodberlet et. al, 1989). To 

overcome this, three different methods of generating a single SSM/I wind speed retrieval 
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from an overpass were employed. The first involves finding the SSM/I retrieval that is 

spatially nearest to the buoy; this measurement is termed the "nearest neighbor". The second 

method is to take a straight average of all of the SSM/I retrievals that meet the matchup 

criteria and generate a single SSM/I wind speed. Third, an inverse distance weighted 

average of the brightness temperatures was computed. 

For the six month period of this study, a total of 127,524 SSM/I measurements 

were generated by the SSM/I that met the spatial and temporal matchup criteria - an average 

of 18 correlated SSM/I measurements for each buoy wind speed measurement. Of this total, 

93,125 SSM/I measurements are matched with NDBC buoys, while 34,399 SSM/I 

measurements are coincident with TOGA buoys. There are a greater number of NDBC 

matchups because there are more NDBC buoys than TOGA buoys included in the study. 

From the total 127,524 data points, 7085 independent, uncorrelated observations 

were distilled - 5427 NDBC buoy matchups and 1658 TOGA buoy matchups. There are, 

therefore, 7085 nearest neighbor data points that comprise the global data set upon which 

most of the data analysis contain herein is conducted. 

C.        WIND SPEED DISTRIBUTION 

Figure 15 shows the distribution of wind speeds measured by in-situ TOGA and 

NDBC buoys for the sixth month period examined in this study , September 1991- April 

1992. The term "global" refers to the combined data set comprised of both TOGA and 

NDBC buoy measurements. Figure 16 displays roughly 500,000 wind speed measurements 

obtained from TOGA and NDBC buoys over a full two year period. A comparison of 

Figures 15 and 16 clearly demonstrates that the distribution of wind speeds comprising the 

study data set are representative of the global winds likely to be found in the sampled 

regions over an extended period of time. 

Importantly, the study data set includes significant numbers of data representing 

wind speeds in excess of 20 m/s and less than 3 m/s, permitting the validation of wind speed 

retrieval methods in these regions. The locations of the buoys used in this study are shown 

in Figure 17. The objective, then, is to evaluate the four wind speed retrieval methods over 
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a range of wind speeds that are reasonably representative of a known distribution of global 

wind speeds. 
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IV.   OBSERVATIONS 

A.        SSM/I WIND SPEED VS IN-SITU BUOY WIND SPEED 

1.        All SSM/I -Buoy Matchups 

The first comparisons made to determine the efficacy of each of the four wind speed 

retrieval methods employed the full 127,524 data points meeting the spatial and temporal 

matchup requirements. None of the "rain flags" developed for use by the respective wind 

retrieval methods were applied to the data. Figures 18-22 give a first cut estimation of how 

well each method performs. A least squares fit is calculated and displayed against a diagonal 

reference line that represents a perfect match between SSM/I retrieved wind speed and the 

measured buoy wind speed. Figure 18 shows that the CV algorithm overestimates wind 

speeds by roughly 2.7 m/s. Figure 19 displays only the CV algorithm measurements that are 

coincident with the lower wind speed regions associated with TOGA buoys. In the lower 

wind speed regime, the CV algorithm overestimates wind speeds by 3.9 m/s. This problem 

was recognized by the authors of the CV algorithm and led, in part, to the formulation of the 

improved Goodberlet, Swift, Wilkerson (GSW) algorithm. 

Figure 20 demonstrates the improved performance of the GSW algorithm over the 

CV algorithm for the same data set. The GSW algorithm overestimates total wind speeds 

by only 1 m/s - a marked improvement. Figure 21 shows that the GSW performs better than 

the CV algorithm largely because of increased performance in the low wind speed regions. 

The improvement in performance achieved by the GSW algorithm over the CV algorithm 

is discussed in greater detail later. 

Figures 22 and 23 examine the performance of the SBB and NMC neural networks, 

respectively, over the same, non-rainflagged 127,524 point data set. At the lower wind 

speeds, the two neural networks overestimate buoy wind speed by up to 3 m/s. Agreement 

with buoy wind speed measurements is achieved, in both neural networks, at approximately 

7 m/s - the global wind speed average. As wind speed increases beyond 7 m/s, the neural 

networks   display   a   tendency   to   increasingly   underestimate   buoy   wind   speed. 
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Underestimates of buoy wind speed range from 8-12 m/s at wind speeds of 20-22 m/s. 

These characteristics are similar to those reported by Sayward (1994) based on his three 

month TOGA buoy analysis. 

2.        Nearest Neighbor, Average or Weighted Average SSM/I Data 

The remainder of the data analysis conducted in this study focuses on the 

performance of the four wind retrieval methods upon the smaller, uncorrelated data set 

comprised of the single nearest neighbor, average, or weighted average value retrieved for 

each buoy wind speed measurement. Furthermore, the rain flags developed for each of the 

wind retrieval methods (with the exception of the "all weather" NMC neural network") are 

included. Recall, however, that the term "rain flag" is somewhat of a misnomer. Rain flag 

tags indicate any condition (including rain) which leads to reduced retrieval accuracy. 

Therefore, wind retrieval methods are examined under the conditions their authors intended. 

Table 3 shows the number of data points included in each rainflagged subset of the 7085 

point uncorrelated data set for each of the three wind speed retrieval methods that employ 

rain flags. 

The first set of plots applied to the uncorrelated data set examines the performance 

of each wind retrieval method under "clear" conditions which vary depending upon the 

retrieval method. Because the original D-matrix algorithm was required to meet the DMSP 

specification of ± 2 m/s, the standard deviations achieved by the four wind speed retrieval 

methods are a primary measure of achievement. Furthermore, it is assumed that the DMSP 

requirement refers to the standard deviation, in an average sense, of the difference between 

all coincident buoy and SSM/I wind speed measurements. Admittedly, this interpretation 

can disguise the fact that over certain wind speed sub intervals the accuracy of a given wind 

speed retrieval method may exceed 2 m/s. This is often true for regression-type algorithms, 

like the CV and GSW algorithms, which tend to make especially good predictions near the 

overall average wind speed and predictions of less accuracy for wind speeds which are 

removed from the average wind speed (Goodberlet et al., 1989). 

Figures 24-27 are scatter plots which illustrate the effectiveness of the four wind 
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speed retrieval methods in clear conditions. In these figures, the horizontal axis represents 

the range of buoy wind speed measurements and the vertical axis represents the SSM/I 

nearest neighbor wind speeds retrieved using a particular method. For each method a plot 

was generated using nearest neighbor (nn), average (avg) and weighted average (wavg). 

Tables 4-6 summarize the results for the TOGA, NDBC and combined (global) data sets, 

respectively. 

Table 4 shows that all four wind speed retrieval methods possess acceptable standard 

deviations of less than 2 m/s. The standard deviation of the two neural networks is lower 

than the standard deviation achieved by the two linear regression algorithms. The smallest 

standard deviation is achieved by the NMC neural network. In addition to performing 

slightly better than the linear regression algorithms in terms of standard deviation, the neural 

network retrievals display significantly better correlation. The linear regression algorithms, 

however, possess far better slopes to their linear least squares fit lines and display less bias. 

The GSW algorithm clear weather data bias, in particular, is superlative. 

In every measure of performance, the GSW algorithm performs better than the CV 

algorithm it was designed to improve upon. This improvement, however, is due in large part 

to the far more restrictive clear day brightness temperature criteria imposed by the GSW 

algorithm. Of the total 7085 data points in this set, only 63% of GSW data appears as clear 

day while 81% of CV data appears as clear day. 

Using a single SSM/I average or weighted average data point to coincide with buoy 

measured wind speed, as opposed to the nearest neighbor, degrades the slope and bias of 

each of the wind speed retrieval methods. At the same time, an average or weighted average 

value slightly increases each method's performance in terms of correlation and, most 

importantly, standard deviation. 

The next series of figures (Figures 28-33) display the error in SSM/I retrieved wind 

speeds plotted against buoy wind speeds. For these plots the 7085 nearest neighbor SSM/I 

values were plotted against their coincident buoy values. In Figure 28, CV rain flags 0, 1, 

2 and 3 are represented by circles, diamonds, squares and crosses respectively. The symbols 
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are the same for the GSW algorithm shown in Figure 29 excepting rain flag 3, which the 

GSW algorithm does not possess. The SBB neural networks' two rain flags representing 

clear and cloudy conditions are represented by circles and diamonds (Figure 30). The NMC 

neural network does not contain rain flags since Krasnopolsky et al. developed the NMC 

neural network without partitioning the data based on atmospheric moisture conditions. The 

NMC data was, however, filtered through the CV rain flag algorithm so that values of A 37 

greater than 165-5 % of the data set - are not included (Figure 31). 

In Figure 28, for rain flag 0, the CV algorithm generates a distribution of wind 

speeds that correlate reasonably well with buoy wind speeds within the 5-14 m/s wind speed 

range. Rain flag 0 wind speed retrievals for very low wind speeds are biased slightly high 

while those greater than 14 m/s are biased slightly low. The algorithm performs increasingly 

poorly as atmospheric conditions deteriorate, as evidenced by the appearance of rain flagged 

data. Values retrieved under rain flag conditions significantly overestimate wind speeds 

throughout the range of observed wind speeds - severely at low wind speeds and less 

severely at higher wind speeds. Figure 32 clearly demonstrates the high wind speed bias 

exhibited by CV wind speeds retrieved under rain flag conditions in equatorial regions. 

Figure 29 shows how the GSW algorithm performs over the full range of wind 

speeds when its more discriminating rain flags are applied. In contrast to the CV algorithm, 

the GSW rain flag 0 data tend to underestimate winds overall, including the 5-10 m/s range 

where most wind speed values are registered. At lower wind speeds, the GSW rain flag 0 

retrievals agree fairly well with measured values. As wind speed increases, however, the 

GSW rain flag 0 retrievals increasingly underestimate wind speed. The GSW algorithm 

achieves some success in attenuating the high wind speed bias displayed by CV rain flagged 

retrievals in equatorial regions (Figure 33). These GSW values remain biased high, 

however. In contrast to the CV algorithm, rain flagged GSW retrievals at higher wind 

speeds (>15 m/s) increasingly underestimate measured wind speed. GSW rain flag 2 data, 

in particular, is prone to sizeable error. 

The SBB neural network is shown (Figure 30) with only clear and cloudy conditions 
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plotted. Although SBB acknowledge a third "very cloudy" condition, a neural network was 

not developed for this case; very cloudy points are therefore excluded. SBB rain flag 0 data 

displays a distinct inclination to underestimate wind speed as measured wind speed 

increases. For winds in the 0-5 m/s range, SBB exhibits a slightly high bias. From 5-10 

m/s, SBB underestimates measured wind by up to 4 m/s. Beyond 10 m/s SBB accuracy falls 

off steadily so that low bias errors up to 8 m/s are observed. The pattern is the same for 

SBB retrievals under cloudy conditions, except that in the cloudy case the high bias at low 

wind speeds and the low bias at high wind speeds are more pronounced. 

The NMC neural network does not employ rain flags. Yet, the NMC neural network, 

too, exhibits increasingly low bias as measured wind speed increases (Figure 31). NMC 

retrieved wind speeds overestimate wind speed in the 0-5 m/s range, increasingly 

underestimate wind speed in the 5-10 m/s range, and significantly underestimate wind 

speeds greater than 10 m/s. At very high winds (>20 m/s), NMC retrieved winds 

underestimate measured wind speed by up to 10 m/s. 

B.        BRIGHTNESS TEMPERATURE-BASED DATA PARTITIONING 

Due to existing shortcomings in the theoretical models used to describe radiometric 

emission from the ocean as a function of wind speed, most retrieval algorithms are 

necessarily empirical. Moreover, until the development of the GSW algorithm they were 

usually linear (e.g., D-matrix, CV). Each algorithm has been developed for specific 

atmospheric conditions. Three of the four algorithms (excepting NMC) used in this study 

employ brightness temperature as the primary basis for discriminating between various 

levels of atmospheric moisture and to establish rain flags and retrieval criteria. Because of 

its overriding importance in the development of wind speed retrieval algorithms, the next 

group of figures in this study examines more closely the performance of algorithms in 

regions partitioned according to brightness temperature. 

Figure 34 illustrates the CV error (SSM/I wind speed - buoy wind speed) plotted 

against the difference of brightness temperature, A37 (37 GHz (V) - 37 GHz (H)), prior to 

the application of rain flags. Figure 35 shows the same plot after the CV rain flags have 
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been applied. Figure 35 shows that the algorithm performs quite well in the region above 

A = 50. Below AJ7= 50, the algorithm performs increasingly poorly, tending to 

overestimate the buoy wind speed. Below A37= 30, the algorithm frequently overestimates 

winds by up to 20 m/s. Indeed, in high moisture region several data points (not shown) 

exceed 20 m/s. 

Figure 36 illustrates the GSW error (SSM/I wind speed - buoy wind speed) plotted 

against the difference in brightness temperature, A37, prior to assigning rain flags. Of note 

in this figure is the extreme low bias evident below A37 = 35. This shows that in an attempt 

to rectify the high bias exhibited by the CV algorithm in high moisture regions, the GSW 

algorithm coefficients provide a low bias counterweight. Recognizing that a bias, albeit in 

different form, still exists in the high moisture regions, GSW applies a strict rain flag to 

prohibit the use of the GSW algorithm in this region (Figure 37). In Figure 37, points below 

A37= 32 are not plotted as recommended by the algorithm's authors. Above A37= 45, the 

algorithm wind speed is biased slightly low, although the vast majority of the bias lies within 

the region ± 5 m/s. Below A37 = 45 down to A37= 32, the algorithm performs increasingly 

poorly, with both high and low wind speed bias error escalating. 

Figures 38 and 39 illustrate that, although the error associated with A37< 50 is 

slightly higher than that for A37> 50, in general, the performance of the SBB neural 

network does not significantly depend upon the A37 parameter. Similarly, the NMC neural 

network, which is based only in part on brightness temperature, appears to operate equally 

effectively in all moisture regions (Figure 40). 

C. PHYSICAL PARAMETER-BASED DATA PARTITIONING 

More recently, a number of SSM/I algorithms have been developed to estimate 

various moisture-related quantities such as liquid water path (LWP), water vapor path 

(WVP) and rain rate (RR). Other algorithms use a combination of brightness temperature 

data and physical parameters to retrieve a wind speed. The NMC algorithm, for example, 

uses LWP, WP and RR algorithms, in addition to brightness temperature information, to 

classify its data (Krasnopolsky et al., 1994). Schlüssel and Luthardt (1991) estimate wind 

38 



speeds from the SSM/I using simulated brightness temperatures obtained by calculating the 

radiative transfer from the ocean surface through the atmosphere for five of the seven SSM/I 

channels. These results are applied to a global set of vertical profiles of temperature and 

humidity (Krasnopolsky et al., 1994). The next set of figures examines, in greater detail, 

the role that the physical parameters water vapor, cloud water, relative humidity and 

barometric pressure play in the effective retrieval of SSM/I winds. 

For this comparison, water vapor (WV) and cloud liquid water (CW) values are 

obtained from SSM/I channels 22.2 GHz and 85.5 GHz. Water vapor is the gaseous 

atmospheric water constituent whereas cloud liquid water is that portion of the liquid 

atmospheric water consisting of water droplets too small to precipitate - generally having 

radii less than 100 microns. Figure 41 and 42 further reinforce earlier findings regarding 

the performance of the CV algorithm in high moisture conditions. The algorithm displays 

a nominally high wind speed bias under low moisture conditions but increasingly 

overestimates wind speed as the atmospheric moisture content increases. Overestimation 

of in-situ wind speeds by 10 m/s or more occurs when water vapor content exceeds 50 kg/m2- 

and when cloud water values exceed 0.35 kg/m2. As expected, the rain flagged values 

associated with lower A37 values and corresponding to higher water vapor content, exhibit 

the greatest error. 

Figure 43 shows that, for the GSW algorithm, wind speed bias is slightly high for 

water vapor content values ranging from 5-12 kg/m2, is generally low for values ranging 

from 13-50 kg/m2- Above 50 kg/m2 exhibits significant low and high wind speed error. 

Rain flag 1 data above 50 kg/m2 is clearly biased low, providing further evidence of the 

effect the refined GSW coefficients have on the performance of the algorithm in regions of 

high moisture content. Similar tendencies are evident in the cloud liquid water plot (Figure 

44). Again, the severe low wind speed bias is exhibited in high moisture regions. 

Figures 45 and 46 illustrate the performance of the SBB neural network over the 

range of water vapor and cloud liquid water values. The SBB neural network performs 

nearly uniformly, exhibiting a marginally low wind speed bias over the entire range.  In 
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addition, it is clear from Figure 45 that the neural network performs worse under rain flag 

1 (cloudy) conditions than in rain flag 0 (clear) conditions - irrespective of the amount of 

water vapor present. Similarly, the NMC neural network is biased low over the range of 

water vapor and cloud liquid water values (Figures 47 and 48). 
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V.     ANALYSIS 

This chapter examines more closely the performance results described in the previous 

chapter, and endeavors to explain where and why the performance of any given wind speed 

retrieval method is degraded. 

A. CV ALGORITHM 

The CV algorithm represents the first effort undertaken to improve the original D- 

matrix algorithm Subsequent to its development, the authors, Goodberlet, et. al., validated 

its performance. The buoys used to validate the CV algorithm, however, were NOAA buoys 

concentrated largely in mid-latitude regions. Many of the deficiencies uncovered by the 

algorithm's authors are reinforced by this study, despite its broader, more inclusive data set. 

The CV algorithm's performance over the entire range of wind speeds in clear 

weather (rain flag 0) conditions is actually quite good (SD < 2 m/s). The algorithm possesses 

a very low overall bias (1.246) while retaining an impressive 81% of original data points to 

achieve clear day conditions. This is due, in large part, to the wind speed density weighting 

distribution developed by Goodberlet, et. al. (1989) which served to make all wind speed 

ranges equally important. Yet, in very low (< 3 m/s)and very high wind speed regions (> 15 

m/s) the algorithm does not perform well. 

That the CV algorithm performs poorly in both high and low wind speed regions is 

due in part to the fact that the data set upon which the coefficients for the CV algorithm is 

based was very nearly bereft of winds in these ranges. Furthermore, the CV algorithm 

performs poorly in regions of high moisture content. As a result, the accuracy of low wind 

speed retrievals from moist, equatorial regions is further degraded. Retrievals under 

conditions where water vapor content exceeds 50 kg/m2 are especially poor. 

B. GSW ALGORITHM 

Attempts by Goodberlet et. al., to refine the CV algorithm resulted in the GSW 

algorithm - the first non-linear treatment of SSM/I data. In this study, each and every trial 

data set used to evaluate the performance of the different algorithms indicates that the GSW 
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algorithm performs better, overall, than the CV algorithm However, the price paid to 

achieve this level of performance is steep. The CV algorithm employs 81% of all data for 

use in generating wind speed retrievals in clear day conditions - GSW uses only 63%. 

The more restrictive rain flags employed by GSW effectively mitigate the high wind 

speed bias found at low wind speeds for CV. It accomplishes this task, however, largely by 

eliminating high moisture data points from the data set. Despite the very fine filter applied 

by the GSW algorithm to achieve improved accuracy, errors remain. Because GSW 

eliminates the data points which are the source of the high bias exhibited by CV, the majority 

of GSW retrievals are biased low, including those within the global average wind speed range. 

The mitigation of CV high bias due to elevated atmospheric moisture content is accomplished, 

in part, by replacing the strictly high bias values found in CV retrievals above 50 kg/m2 and 

replacing them with errors biased both low and high. 

C.        SBB AND NMC NEURAL NETWORKS 

The SBB and NMC neural networks perform very similarly. Both overestimate low 

wind speeds (< 3 m/s) and underestimate higher wind speeds (> 11 m/s). Middling wind 

speeds are biased slightly low. These errors are almost certainly due to the absence of low and 

high speeds in the training set used to develop the neural networks. Because the original 

training data set possessed few points in the low and high wind speed regions, the neural 

networks perform poorly there. Moreover, SBB and NMC neural networks do not currently 

take into consideration the density of buoy wind speed measurements and assign an 

appropriate wind speed density distribution weighting factor to the training set. 

Both the SBB and NMC neural networks exhibit little variation in performance based 

upon the amount of atmospheric moisture. The absence of atmospheric moisture-based 

"crosstalk" of the kind that plagues the regression algorithms provides the neural networks 

with a significant advantage. Lastly, the NMC neural network, although ostensibly an "all 

weather network, performed markedly better when filtered through the clear day rain flags 

established for the CV algorithm indicating that some form of rain flag is useful even when 

neural networks are applied. 
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VI.   CONCLUSIONS AND RECOMMENDATIONS 

Applied over the global wind speed distribution represented by the combined TOGA 

and NDBC buoy data set, all four of the wind speed retrieval algorithms examined in this 

study meet the DMSP requirement that the standard deviation be no greater than ± 2 m/s. 

Empirically derived regression algorithms, while straightforward and easy to maintain, are 

significantly affected by the presence of atmospheric moisture. Strictly linear regression 

algorithms, like CV, fail to accurately model the non-linear dependence of wind speed on 

brightness temperatures at high moisture levels. 

Validation of the CV algorithm over the global wind distribution confirms the 

problems with performance described by its authors following the validation of the 

algorithm against predominately mid-latitude buoys. The GSW algorithm mitigates the high 

bias exhibited by the CV algorithm in high moisture regimes. It does so, however, by 

eliminating A37 brightness temperature values less than 31. Data retrieved through a water 

laden atmosphere, however, are equally as important as data retrieved under cloudy 

conditions. The variation in performance between the CV and GSW algorithms highlights 

the central problem with algorithms that are significantly affected by atmospheric moisture. 

Namely, that attempts to improve algorithm performance are necessarily dependent upon 

excluding or modifying values retrieved under high moisture conditions. For this reason, 

among others, neural network-based algorithms appear to hold greater promise for broad- 

based effectiveness than do regression algorithms. 

Both the SBB and NMC neural network perform equally well across the full range 

of water vapor values. Neural network values retrieved under lower AJ7 values are less 

accurate than those retrieved under "clear" conditions. The error generated by the SBB 

neural network during cloudy conditions is greater than that retrieved during clear conditions 

by up to 3 m/s. Though designed as an "all weather" algorithm, the NMC neural network 

performance is enhanced when its data are filtered through the CV rain flag used to 

segregate clear weather conditions. Neural networks perform best where the wind speed 
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density distribution is the greatest. 

To achieve the greatest wind speed retrieval accuracy across the broadest possible 

wind speed range, it is recommended that the authors of the respective neural networks 

develop revised training data sets that represent the full distribution of global winds. 

Increased representation of low and high speed winds in the training data set will help 

eliminate the bias generated by the neural networks in those regions. Alternatively, it should 

be possible to accurately retrieve winds in all regions by employing a combination of 

regression and artificial intelligence techniques. Neural networks may be used when 

regression algorithms begin to fail due to high atmospheric moisture content. 
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APPENDIX A: FIGURES 
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Figure 1: Sources of Thermal Radiation, From [Swift, 1990] 
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Figure 2: Incidence Angle Polarization Effects, From [Swift, 1990] 
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Figure 3: Foam Coverage, From [Swift, 1990] 
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Figure 4: NDBC 10-meter Discus Buoy, From [NOAA, 1995] 
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Figure 7: TOGA Buoy Data Flow Path, From [PMEL, 1995] 
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Figure 8: SSM/I on DMSP Satellite (Deployed Position), From [Hollinger et al., 1987] 
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Figure 9: Instantaneous Field of View, From [Hollinger et al., 1987] 
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Figure 10: SSM/I Successive Orbits, From [Hollinger, 1987] 
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Figure 11: D-matrix Wind Speeds, From [Hollinger, 1991] 
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Figure 12: D-matrix Wind Speeds, From [Hollinger, 1991] 
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Figure 13: Topology of a Multi-Layer Feed-Forward Neural Network, From [Dawson, 1993] 
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Figure 14: Neural Network Architecture used by SBB and NMC, From [Krasnopolsky, 1994] 
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Figure 15: NDBC and TOGA Wind Speed Distribution 
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Figure 16: MDBC and TOGA Wind Speed Distribution (2-Year Period) 
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Figure 17: Location of TOGA and NDBC Buoys 
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Figure 21: GSW Wind Speed vs TOGA Buoy Wind Speed 
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Figure 22: All SBB Wind Speed Data vs Buoy Wind Speed 
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Figure 23: All NMC Wind Speed Data vs Buoy Wind Speed 
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Figure 46: (SBB Nearest Neighbor - Buoy) Wind Speed vs Cloud Water 
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Figure 47: (NMC Nearest Neighbor - Buoy) Wind Speed vs Water Vapor 
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APPENDIX B: TABLES 

TOGA BUOYS USED FOR SSM/I COMPARISONS 

BUOY LD. ^£ofGfWpi"Cl}5' ^4^ööSK»U1 

90001 02.0 N 250.0 Equatorial 

90002 02.0 S 250.0 Equatorial 

90003 00.0 235.0 Equatorial 

90004 02.0 S 235.0 Equatorial 

90005 05.0 S 235.0 Equatorial 

90006 05.0 N 220.0 Equatorial 

90008 05.0 S 220.0 Equatorial 

90009 05.0 N 205.0 Equatorial 

90010 00.0 205.0 Equatorial 

90011 05.0 S 205.0 Equatorial 

90012 08.0 N 190.0 Equatorial 

90013 05.0 S 190.0 Equatorial 

90014 08.0 S 190.0 Equatorial 

90015 05.0 N 156.0 Equatorial 

90016 02.0 N 156.0 Equatorial 

90018 05.0 N 165.0 Equatorial 

90019 02.0 N 165.0 Equatorial 

Table 1: TOGA Buoys 
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NDBC BUOYS USED FOR SSM/I COMPARISONS 

BUOY ID. ■;  -»-«/im 
JüA It 1U JJJC« \Vi) xxmmwmgsps 

ZONE 

51002 17.2 202.2 Tropics 

51004 17.5 207.4 Tropics 

51003 19.2 199.2 Tropics 

51001 23.4 197.7 Low-latitude transition 

42001 25.9 270.3 mid-latitude 

42002 26.0 266.5 mid-latitude 

42003 26.0 274.1 mid-latitude 

41006 29.3 282.6 mid-latitude 

41002 32.2 284.7 mid-latitude 

44004 38.5 289.4 mid-latitude 

46006 40.8 222.4 mid-latitude 

44011 41.1 293.4 mid-latitude 

46002 42.5 229.6 mid-latitude 

44005 42.7 291.7 mid-latitude 

46005 46.1 229.0 mid-latitude 

46004 50.9 224.1 mid-latitude 

46003 51.9 204.1 mid-latitude 

46001 56.3 211.7 Arctic 

46035 57.0 182.3 Arctic 

Table 2: NDBC Buoys 
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mSTKUSUTlUIN Üb DATA POINTS WITHIN RAIN FLAG SUBSETS 

Wind Speed 

Retrieval 

Method 

Total Data 

Points 

Rain Flag 0 

Points (%) 

Rain Flag 1 

Points (%) 

Rain Flag 2 

Points (%) 

Rain Flag 3 

Points (%) 

CV    TOGA 1658 1106   (67%) 453   (27%) 46     (3%) 53    (3%) 

NDBC 5427 4614   (85%) 587   (11%) 94     (2%) 132   (2%) 

Global 7085 5720   (80%) 1040 (15%) 140     (2%) 185   (3%) 

GSW TOGA 1658 638   (38%) 944   (57%) 16      (1%) N/A 

NDBC 5427 3852   (71%) 1384 (26%) 43      (1%) N/A 

Global 7085 4490   (63%) 2328 (33%) 59      (1%) N/A 

SBB TOGA 1658 1166   (70%) 408   (25%) 84** (5%) N/A 

NDBC 5427 4620   (85%) 675   (12%) 132** (2%) N/A 

Global 7085 5786   (82%) 1083 (15%) 216** (3%) N/A 

NMC TOGA 1658 1106* (67%) N/A N/A N/A 

NDBC 5427 4614* (85%) N/A N/A N/A 

Global 7085 5720* (80%) N/A N/A N/A 

Table 3: Rain Flag Data 

*   Filtered through CV rain flag 0 criteria 

** Not Employed in Study 
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GLOBAL WIND SPEED RETRIEVAL PERFORMANCE 

[CLEAR DAY (RAIN FLAG 0) DATA] 

CV 

(nn) 

CV 

(avg) 

CV 

(wavg) 

GSW 

(nn) 

GSW 

(avg) 

GSW 

(wavg) 

SLOPE 0.843 0.822 0.828 0.877 0.856 0.862 

BIAS 1.246 1.499 1.434 0.070 0.300 0.232 

COR 0.855 0.866 0.869 0.846 0.862 0.864 

SD 1.942 1.837 1.820 1.973 1.824 1.816 

SBB SBB SBB NMC NMC NMC 

SLOPE 0.697 0.677 0.683 0.630 0.615 0.619 

BIAS 1.388 1.577 1.517 1.815 1.962 1.922 

COR 0.862 0.884 0.885 0.864 0.884 0.885 

SD 1.851 1.751 1.738 1.891 1.827 1.819 

Table 4: Global Wind Speed Retrieval Performance 
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TOGA WIND SPEED RETRIEVAL PERFORMANCE 

[CLEAR DAY (RAIN FLAG 0) DATA] 

CV 

(nn) 

CV 

(avg) 

CV 

(wavg) 

GSW 

(nn) 

GSW 

(avg) 

GSW 

(wavg) 

SLOPE 0.641 0.600 0.614 0.707 0.685 0.695 

BIAS 2.416 2.775 2.664 0.252 0.529 0.444 

COR 0.649 0.688 0.697 0.729 0.800 0.801 

SD 1.628 1.464 1.449 1.394 1.154 1.153 

SBB SBB SBB NMC NMC NMC 

SLOPE 0.737 0.701 0.717 0.584 0.568 0.574 

BIAS 0.698 0.990 0.872 1.763 1.881 1.838 

COR 0.762 0.804 0.808 0.751 0.802 0.803 

SD 1.366 1.205 1.196 1.295 1.184 1.180 

Table 5: Wind Speed Retrieval Performance (TOGA Buoys) 
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NDBC WIND SPEED RETRIEVAL PERFORMANCE 

[CLEAR DAY (RAIN FLAG 0) DATA] 

CV 

(mi) 

CV 

(avg) 

CV 

(wavg) 

GSW 

(nn) 

GSW 

(avg) 

GSW 

(wavg) 

SLOPE 0.850 0.829 0.835 0.869 0.849 0.855 

BIAS 1.235 1.491 1.426 0.287 0.503 0.436 

COR 0.862 0.872 0.874 0.850 0.864 0.866 

SD 2.010 1.915 1.898 2.022 1.884 1.874 

SBB SBB SBB NMC NMC NMC 

SLOPE 0.682 0.662 0.668 0.623 0.607 0.612 

BIAS 1.616 1.796 1.737 1.957 2.118 2.074 

COR 0.866 0.887 0.888 0.867 0.886 0.850 

SD 1.954 1.863 1.849 2.006 1.950 1.940 

Table 6: Wind Speed Retrieval Performance (NDBC Buoys) 
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